

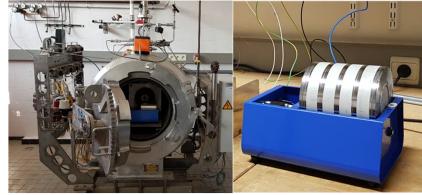
Bilbao Exhibitio

Assessment pozzolanic reactivity of carbonated BOF slag

Antonino Runci, Liesbeth Horckmans, Mieke Quaghebeur, Hadi Kazemi Kamyab, Peter Nielsen

Antonino Runci

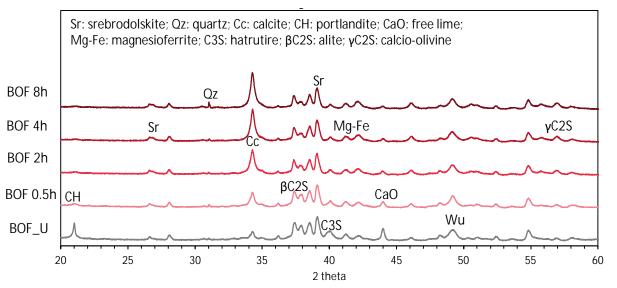
Introduction

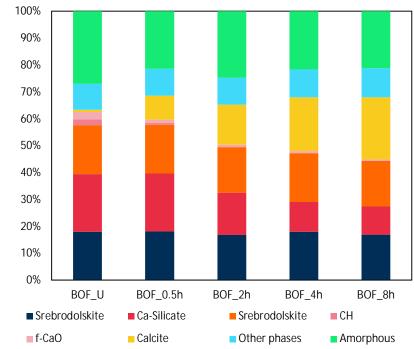

Enforced carbonation of BOF slag

- Enforced carbonation is an innovative technology that converts alkaline waste into valuable supplementary cementitious materials (SCM).
 - $Ca2SiO4 + 2CO2 + 2H2O \rightarrow 2CaCO3 + SiO2 \cdot nH2O$
- Basic Oxygen Furnace (BOF) slag is an ideal feedstock for carbonated construction materials, capable of absorbing up to 100-150 kg of CO₂ per tonne of SCM.
 - Overcome traditional barriers to its use as SCM, like fCaO
 - Improve reactivity by the formation of CaCO₃ and SiO₂
 - Positive impact on CO₂ reduction: new SCM, CO₂ adsorption
- The critical challenge is to establish a reliable method for accurately assessing the pozzolanic reactivity of carbonated BOF (cBOF) slag.

Experimental Procedure

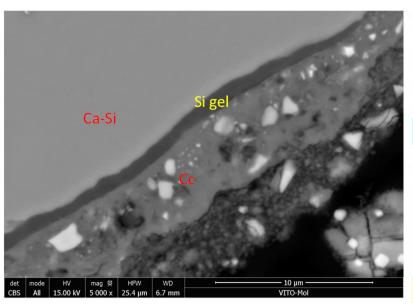
- Carbonation Conditions:
 - Semi-dry dynamic carbonation in a stainless-steel drum
 - T = 40°C, P = 0.5 bar, CO₂ = 100%, RH = 92%, and moisture content = 5%.
 - Carbonation cycles were conducted for 0.5, 2, 4, and 8h
 - Material characterization: TC (total carbon content), XRD, SEM-EDS.
 - Reactivity assessment: Isothermal calorimetry, R³ test - ASTM C1897-20, and strength activity index (SAI) - EN-196-1

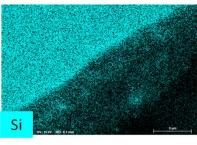


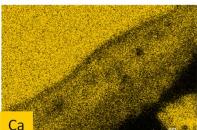


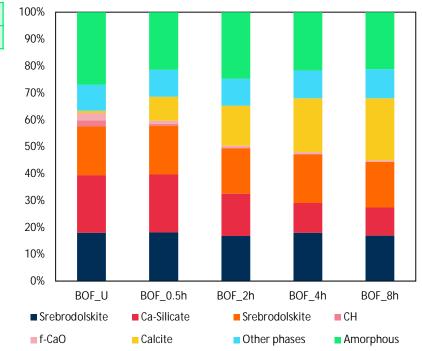
Carbonation process of BOF slag

	BOF_U	BOF_0.5h	BOF_2h	BOF_4h	BOF_8h
TC (%C)	1,37	2,25	3,59	3,72	4,07

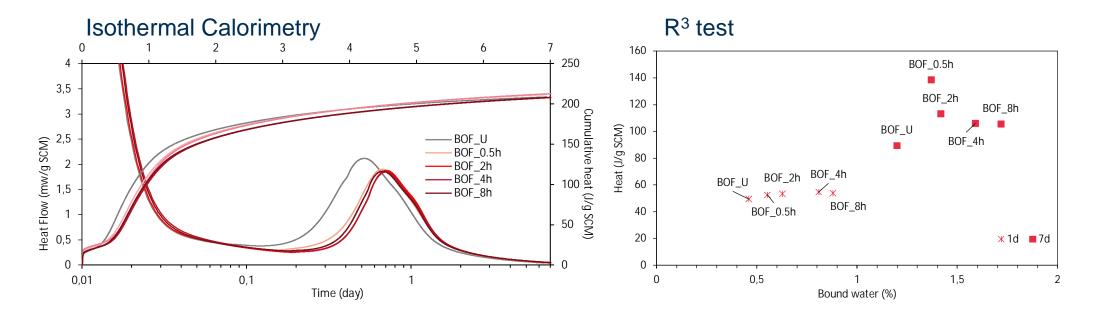


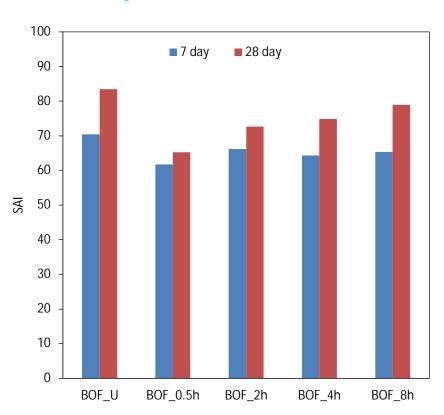


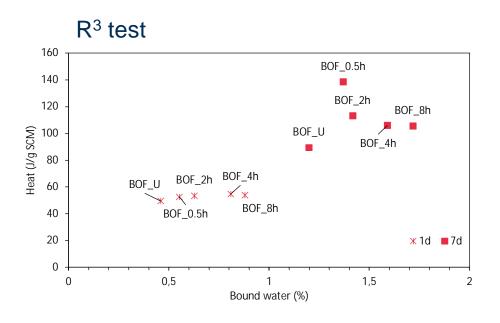



Carbonation process of BOF slag

	BOF_U	BOF_0.5h	BOF_2h	BOF_4h	BOF_8h
TC (%C)	1,37	2,25	3,59	3,72	4,07






Reactivity assessment of carbonated Slag

Reactivity assessment of carbonated Slag

Conclusion

- The SAI does not correlate with R³ values from heat release and bound water, due to the slow reactivity of silica gel, requiring longer hydration times for reacting.
- The R³ test shows significant heat release increases after 3 days, indicating cBOF slag needs extended hydration to measure pozzolanic reactivity accurately.
- The absence of correlation between R³ methods suggests that C2S/C3S phases and CH contribute to hydration but these contributions are not reflected at bound water at 350°C and in SAI. Thus, heat release may not reliably determine cBOF slag reactivity.
- Although BOF_U has the highest SAI, this is unsupported by R³ data and overlooks potential volume instability from f-CaO.

Thank you

Antonino Runci, PhD

antonino.runci@vito.be

www.carbon4minerals.eu

Funded by the European Union

01/11/2024

vito.be